If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+46x-28=0
a = 16; b = 46; c = -28;
Δ = b2-4ac
Δ = 462-4·16·(-28)
Δ = 3908
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3908}=\sqrt{4*977}=\sqrt{4}*\sqrt{977}=2\sqrt{977}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(46)-2\sqrt{977}}{2*16}=\frac{-46-2\sqrt{977}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(46)+2\sqrt{977}}{2*16}=\frac{-46+2\sqrt{977}}{32} $
| z^-5z=0 | | 3k–2=4 | | T+2x=180 | | 90=3x+9 | | 57=s-16 | | R(x)=3^2+27/2x^2-6x-8 | | -3x+x-10=4 | | 2+3+3*11=x | | 0.5n+2.8-0.4n=6.2+0.1 | | -3(4t-5)+9t=3t-2 | | 8n=-136 | | 12-11y=5+7 | | -4(5t-4)+5t=6t-7 | | 2(-7x-8=-16+3 | | 7y-5y=8 | | 10-3b-3/4=b+5/2 | | 7a–3a=12 | | 10-v=227 | | n/4+3=10 | | 4=2+2c | | x/11-3=7/22 | | 14k=48 | | 10t–2t=8 | | 6*7+8=5*6+x | | 7-4x=-8+x | | 11x+3=3×+35 | | 2x-4(x-5)=-9+5x-20 | | 7-4x=-8x | | 7+10x=-3x-7 | | 4c+3(2-c)=3c | | h/2+3=-11 | | 4y=5=13 |